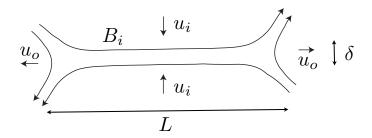

Plasma Instabilities in Post-Eruption Solar Corona, Formation of Plasmoids and Supra-Arcade Downflows

Yi-Min Huang

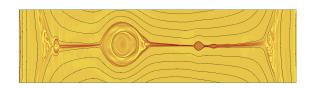
Department of Astrophysical Sciences, Princeton University

PPPL Theory Seminar, Nov. 21, 2014


Acknowledgement

- Amitava Bhattacharjee
- Hongang Yang, Brian Sullivan, Lei Ni, Scott Baalrud, Kai Germaschewski, Lijia Guo
- Barrett Rogers
- Davina Innes, Sibylle Günter, Qingquan Yu, Karl Lackner

Outline


- 2D plasmoid instability
 - Linear theory
 - Scaling laws & reconnection rate in nonlinear regime
 - Distribution of Plasmoids
 - Hall MHD and reconnection phase diagram
- Plasmoid instability in 3D
 - Linear oblique plasmoid instability in 3D geometry with a guide field
 - Nonlinear simulation
 - Reconnection rate comparison with 2D
 - Energy spectrum and characteristic of turbulence
- Supra-arcade downflows (SADs)
 - Observation & Interpretations
 - Ralyleigh-Taylor type instabilities in the reconnection exhaust region
- Future directions & possible connection with laboratory plasma physics

Classical Sweet-Parker Theory

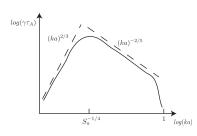
- $S = LV_A/\eta$
- $\delta \sim L/\sqrt{S}$, $u_o \sim V_A, u_i \sim V_A/\sqrt{S}$
- Solar Corona: $S \sim 10^{12}$, $\tau_A = L/V_A \sim 1s \Rightarrow \tau_{SP} \sim 10^6 s \gg \text{Solar}$ flare time scales $10^2 10^3 s$.

Plasmoid Instability Leads to Reconsideration of Fast Reconnection in Resistive MHD

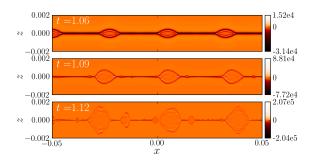
- ullet The Sweet-Parker current sheet is unstable to secondary tearing instability at high S.
- Linear theory predicts $\gamma \sim S^{1/4}V_A/L$ and the number of plasmoids $\sim S^{3/8}$. (Loureiro et al. 2007)
- The key point is that the equilibrium also scales with S: $\delta_{SP} \sim L S^{-1/2}$.

Linear Plasmoid Instability

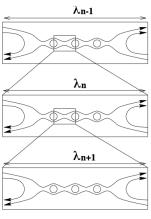
Harris sheet profile $\mathbf{B} = B_o \tanh(x/a)\mathbf{\hat{y}}$


$$\gamma \tau_A \sim \begin{cases} S_a^{-3/5} (ka)^{-2/5} (1 - k^2 a^2)^{4/5}, & ka \gg S_a^{-1/4} \\ S_a^{-1/3} (ka)^{2/3}, & ka \ll S_a^{-1/4} \end{cases}$$

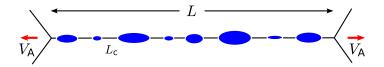
Peak $\gamma \sim S_a^{-1/2}$ at $ka \sim S_a^{-1/4}$, where $S_a = aV_A/\eta$, $\tau_A = a/V_A$.


Coppi et al. 1976

Translate to the Sweet-Parker language: $S \equiv LV_A/\eta, \ a \rightarrow \delta_{SP} \sim LS^{-1/2}$: The peak γ occurs at $kL \sim S^{3/8}$ with $\gamma_{max} \sim S^{1/4}V_A/L$.


Bhattacharjee et al. 2009

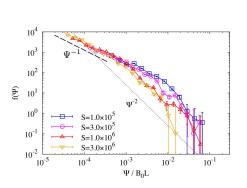
Plasmoid Instability Leads to Fractal-like Cascade

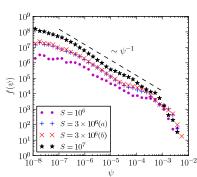


Unstable when $S > S_c \sim 10^4$. The reconnection rate $\simeq 10^{-2} BV_A$, nearly independent of S. No. of plasmoids $n_p \sim S$, secondary current sheet width and length $\sim S^{-1}$, and $J \sim S$.

Shibata & Tanuma (2001)

Heuristic Argument Based on Marginal Stability

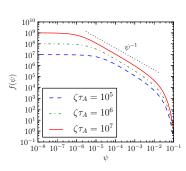

- Secondary current sheets should be close to marginally stable
 - Cascade to smaller scales stops when local current sheets become stable to the plasmoid instability
 - New plasmoids are generated when local current sheets exceed a critical length.
- $L_c \sim S_c \eta / V_A \sim L S_c / S$, $\delta_c \sim L_c / S_c^{1/2} \sim L S_c^{1/2} / S$, $J \sim B / \delta_c \sim B S / L S_c^{1/2}$
- Number of plasmoids $n_p \sim L/L_c \sim S/S_c$
- Inflow speed $\sim V_A/\sqrt{S_c}$, area transfer rate into each plasmoid $\sim L_c V_A/\sqrt{S_c}$
- Total area transfer rate $\sim n_p L_c V_A / \sqrt{S_c} \sim L V_A / \sqrt{S_c} \sim \sqrt{S/S_c} \times \text{S-P rate}$


Statistical Distribution of Plasmoids

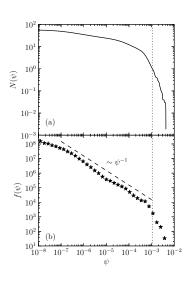
- Fermo et al. (2010): $f(\psi)$ decays exponentially at large ψ .
- Uzdensky et al. (2010): $f(\psi) \sim \psi^{-2}$
- Huang and Bhattacharjee (2012): $f(\psi) \sim \psi^{-1}$ followed by an exponential falloff at large ψ

Loureiro et al. PoP (2012)

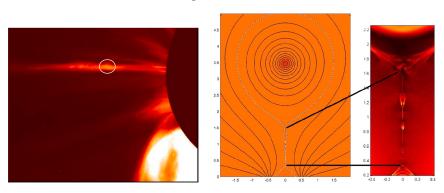
Huang & Bhattacharjee PRL (2012)



Kinetic Model of Plasmoid Distribution

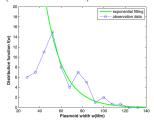

$$\partial_t F + \gamma \frac{\partial F}{\partial \psi} = \zeta \delta(\psi) h(v) - \frac{FH}{\tau_A} - \frac{F}{\tau_A},$$
where $H(\psi, v) = \int_{\psi}^{\infty} d\psi' \int_{-\infty}^{\infty} dv' \frac{|v - v'|}{V_A} F(\psi', v').$

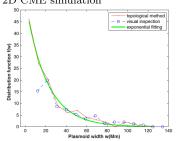
- h(v) is the distribution in relative velocity when new plasmoids are generated.
- Plasmoid loss term due to merging is proportional to relative speed |v v'|.
- Distribution in ψ is recovered via $f(\psi) = \int_{-\infty}^{\infty} F(\psi, v) dv$
- If $|v-v'| \to V_A$, then $f \sim \psi^{-2}$.


Where is Power Law Expected?

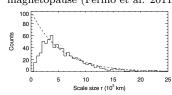
- Transition from power law to exponential occurs when the dominant loss mechanism switches from coalescence to advection approximately when $N \sim 1$.
- Plasmoids in the power-law regime have to be deep in the hierarchy, while plasmoids in the exponential tail are the very largest plasmoids in each snapshot.

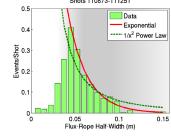
Plasmoids in Post-CME Current Sheet


- Left: Moving bright blobs in LASCO white light coronagraphy may be identified as plasmoids.
- Right: Plasmoids in the post-CME current sheet from a $S=10^5$ simulation of the loss of equilibrium CME model

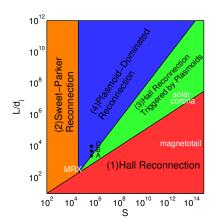

Guo et al. ApJ Lett. 2012

Plasmoid Distributions from Obs. & Expr.

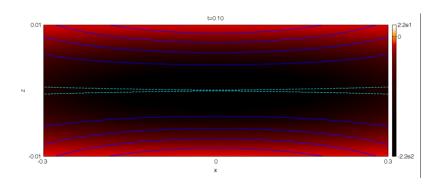

Moving blobs in post-CME current sheet (Guo et al. 2013)


2D CME simulation

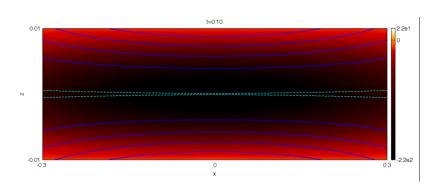
Flux transfer events (FTEs) in magnetopause (Fermo et al. 2011)


Flux ropes in MRX (Dorfman et al. 2014)
Shots 110873-111251

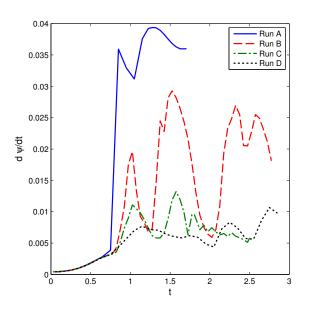
Including Hall Effect – Phase Diagram


$$\mathbf{E} = -\mathbf{u} \times \mathbf{B} + d_i \frac{\mathbf{J} \times \mathbf{B} - \nabla p_e}{\rho} + \eta \mathbf{J}$$

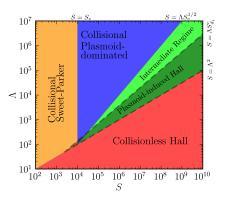
• Another dimensionless parameter L/d_i in addition to S.


A:
$$S = 5 \times 10^5$$
, $L/d_i = 2500$
B: $S = 5 \times 10^5$, $L/d_i = 5000$
C: $S = 5 \times 10^5$, $L/d_i = 10000$

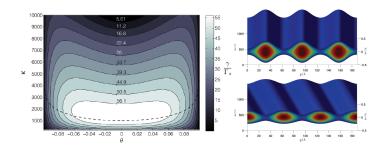
Single X-Point Hall Reconnection


$$S = 5 \times 10^5, \, L/d_i = 2500$$

Intermediate Regime, Both S-P and Single X-Point Hall Solutions are Unstable

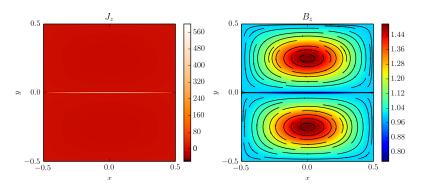

$$S = 5 \times 10^5, L/d_i = 5000$$

Reconnection Rate



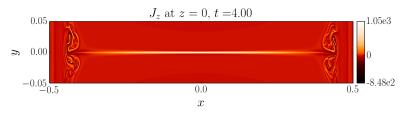
Easier to Realize Intermediate Regime in Large System

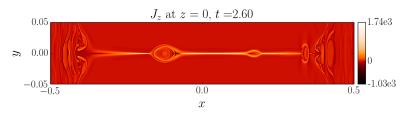
- For the same $S_{d_i} \equiv V_A d_i / \eta$, we realize the intermediate regime at $L/d_i = 5000$ but for $L/d_i \leq 2500$ a single X-point forms
- However, fully kinetic particle-in-cell simulations show continuous plasmoid formation over a much broader range in the phase diagram


Oblique Tearing Modes in 3D

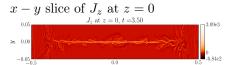
Baalrud et al. PoP (2012)

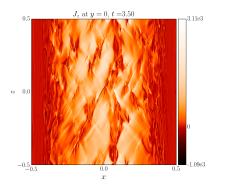
Interaction of oblique tearing modes when islands overlap \Longrightarrow self-generated turbulence and stochastic field lines?

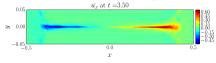

3D Simulation Setup

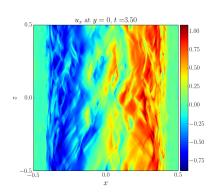

- Viscous/Resistive MHD equations.
- Initial current sheet width ~ 0.003 , reconnecting $B_x \sim 1$, guide field $B_z \sim 1$.
- $\rho = 1, p = 2, \beta \equiv 2p/B^2 \sim 2, S = 2 \times 10^5, Pm = 1.$
- Simulation box $L_x = L_y = L_z = 1$; conducting walls in x y plane, periodic in z.

Sweet-Parker & 2D Plasmoid Reconnection

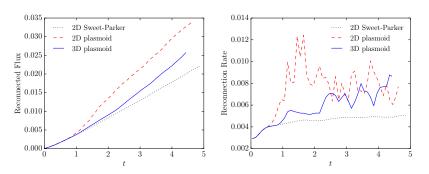

• Sweet-Parker reconnection: 2D, no initial noise


• 2D Plasmoid-Dominated reconnection: seeded with initial random noise $\sim 10^{-3}$ on velocity

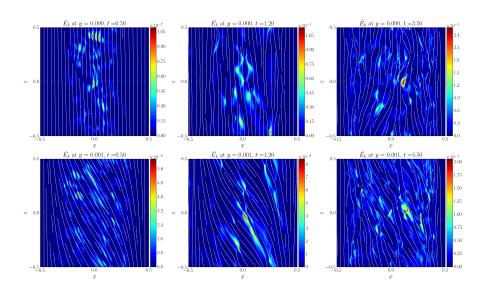

Plasmoid-Induced Turbulent Reconnection


x-z slice of J_z at y=0

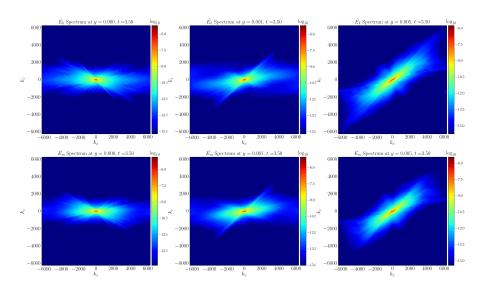
Mean field of outflow $\bar{u_x}$

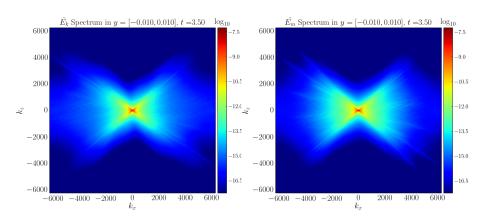


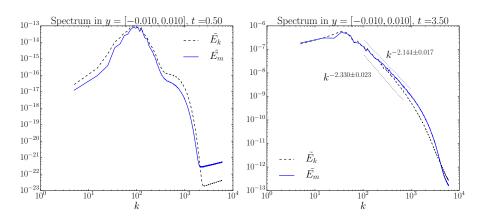
x-z slice of u_x at y=0



Reconnection Rate Comparison

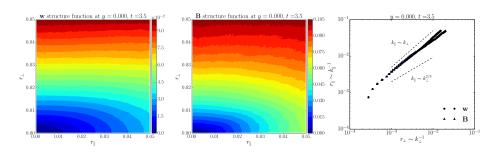

- 2D and 3D plasmoid-dominated reconnection achieve comparable, faster than Sweet-Parker, reconnection rate
- 3D reconnection is measured with the mean field $\bar{\mathbf{B}} \equiv \frac{1}{L_z} \int \mathbf{B} dz$.


Kinetic Energy Fluctuation $\tilde{E}_k \equiv \frac{1}{2} \left| \widetilde{\sqrt{\rho} \mathbf{u}} \right|^2$


Spectrum of Energy Fluctuation

Spectrum of Energy Fluctuation, Averaged over y = [-0.01, 0.01]

Energy Spectra Cascade

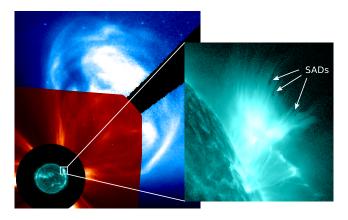


Probing Anisotropy with Structure Functions

- $\mathbf{w} \equiv \sqrt{\rho} \mathbf{u}$
- Local in plane field $\mathbf{B}_l \equiv (\hat{\mathbf{x}}\hat{\mathbf{x}} + \hat{\mathbf{z}}\hat{\mathbf{z}}) \cdot (\mathbf{B}(\mathbf{r}_1) + \mathbf{B}(\mathbf{r}_2))/2$

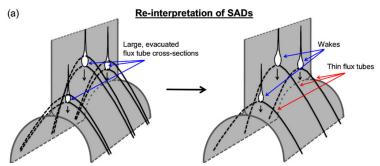
•
$$r_{\parallel} = \left| (\mathbf{r}_1 - \mathbf{r}_2) \cdot \hat{\mathbf{b}}_l \right|, r_{\perp} = \left| (\mathbf{r}_1 - \mathbf{r}_2) \times \hat{\mathbf{b}}_l \right|$$

•
$$F_2^w(r_\perp, r_\parallel) = \left\langle |\mathbf{w}(\mathbf{r}_1) - \mathbf{w}(\mathbf{r}_2)|^2 \right\rangle$$
,
 $F_2^B(r_\perp, r_\parallel) = \left\langle |\mathbf{B}(\mathbf{r}_1) - \mathbf{B}(\mathbf{r}_2)|^2 \right\rangle$

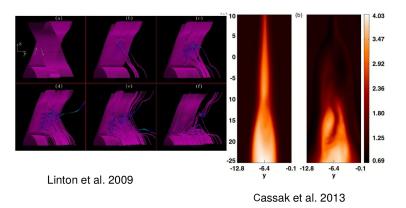


Plasmoid Instability, Summary

- Plasmoid Instability in 2D can facilitate fast, nearly S-independent reconnection even in resistive MHD, and can trigger even faster Hall reconnection if current sheet fragment becomes thinner than d_i
- However, plasmoid-instability mediated reconnection in 3D is qualitatively very different from that in 2D. Interestingly, in fully developed state, reconnection rate in 2D and 3D are comparable.
- Interaction between oblique tearing modes can lead to self-generated turbulent reconnection
 - Energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence
 - The spectra of magnetic energy and kinetic energy fluctuations both satisfy power laws.
 - The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets, therefore traditional turbulence theory may not be applicable.

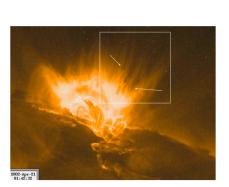

Observation of Supra-Arcade Downflows (SADs)

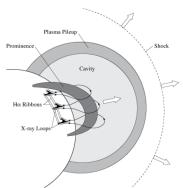
- First reported in McKenzie & Hudson APJ 1999
- Low emission, low density ($< 10^9 cm^{-3}$), high temperature ($\sim 10^7$), wavy structures surrounded by bright fan above flare arcade
- Average lifetime 10-20 min



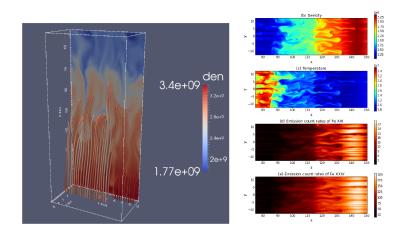
Interpretations of SADs

- Old interpretation SADs are cross sections of reconnected flux tubes from "patchy" reconnection
- New interpretation SADs are wakes behind cross sections of reconnected flux tubes
- Difficulty Why wakes are not filled in by surrounding high density plasmas?

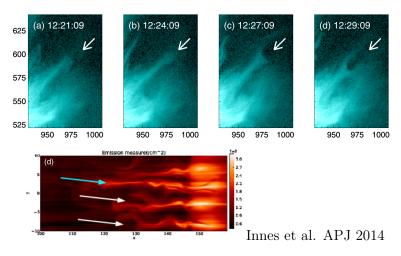

Some Existing simulations of SADs



- Linton et al. employed anomalous resistivity localized in both space & time
- Cassak et al. argued density gradient is important. Reconnection is continuous in time so SADs are not filled in, but must be patchy along the out-of-plane direction.


Can Rayleigh-Taylor Type Instabilities be the Cause of SADs?

- SADs occurs predominantly with $\mathbf{k} \cdot \mathbf{B} \simeq 0$ interchange/ballooning modes
- High pressure below the arcades bad curvature
- Low density outflow jet pushes against high density arcade region



3D Simulation with Harris Sheet

Guo et al. APJL 2014

New R-T "Mushrooms" at the Tips of Spikes

Conclusion — SAD-like structures can arise in the exhaust region of reconnection as a consequence of R-T type instabilities, without reconnection itself being localized in either space or time.

What's Next

- Turbulent Reconnection in 3D
 - Highly inhomogeneous, due to the presence of magnetic shear and outflow jets — Need new theory or phenomenology
 - Self-generated vs. externally driven turbulent reconnection
 - Current sheet broadening due to self-generated turbulence Sufficient to explain solar observation?
 - Include Hall effect
- Supra-Arcade Downflows
 - Include anisotropic thermal conductivity so that we can "see" arcades in synthetic emission
 - Line-tied boundary condition
 - \bullet High S simulations current sheet spontaneous becomes patchy
- CME, plasmoids, and SADs in a single model
- Improve fluid models through closure schemes (e.g. recent work by Liang Wang & Ammar Hakim with higher moments)

Possible Connection with Lab. Plasma Physics

- Plasmoid instability in sawtooth crash with Sybille Günter & coworkers in cylindrical geometry; maybe possible in 3D toroidal geometry?
- Explore new regimes in the phase diagram with FLARE or high energy density laser plasmas experiment (Hanto Ji, Will Fox, et al.)
- Plasmoids in NSTX experiment? (Nimrod simulation by Fatima Ebrahimi)
- Open to suggestions!